Search results for "Subdirect product"

showing 3 items of 3 documents

On the Directly and Subdirectly Irreducible Many-Sorted Algebras

2015

AbstractA theorem of single-sorted universal algebra asserts that every finite algebra can be represented as a product of a finite family of finite directly irreducible algebras. In this article, we show that the many-sorted counterpart of the above theorem is also true, but under the condition of requiring, in the definition of directly reducible many-sorted algebra, that the supports of the factors should be included in the support of the many-sorted algebra. Moreover, we show that the theorem of Birkhoff, according to which every single-sorted algebra is isomorphic to a subdirect product of subdirectly irreducible algebras, is also true in the field of many-sorted algebras.

Pure mathematicslcsh:MathematicsGeneral MathematicsSubalgebraUniversal enveloping algebralcsh:QA1-939directly irreducible many-sorted algebraSubdirect productsymbols.namesakemany-sorted algebraSubdirectly irreducible algebraAlgebra representationsymbolsDivision algebraMathematics::Metric GeometryCellular algebrasupport of a many-sorted algebrasubdirectly irreducible many-sorted algebraMathematicsFrobenius theorem (real division algebras)Demonstratio Mathematica
researchProduct

Quasivarieties of Algebras

2001

This chapter plays a twofold role in the book. Firstly, the chapter surveys basic facts about quasivarieties of algebras. These facts are widely utilised in the subsequent chapters devoted to algebraizable logics. Secondly, the chapter shows how the methods initially elaborated for protoalgebraic sentential logics in the first part can be also applied in the area of equational logic. Most of the results presented in this chapter are proved by way of adapting the purely consequential methods of sentential logic to the needs of the (quasi) equational systems associated with quasivarieties of algebras.

Subdirect productAlgebraComputer scienceFree algebraEquational logicPropositional calculusExtension principle
researchProduct

More on Finitely Generated Quasivarieties

2015

We begin with the following observation concerning arbitrary finitely generated quasivarieties

Subdirect productMathematics::LogicPure mathematicsMathematics::General MathematicsMathematics::Rings and AlgebrasMathematics::General TopologyFinitely-generated abelian groupMathematics
researchProduct