Search results for "Subdirect product"
showing 3 items of 3 documents
On the Directly and Subdirectly Irreducible Many-Sorted Algebras
2015
AbstractA theorem of single-sorted universal algebra asserts that every finite algebra can be represented as a product of a finite family of finite directly irreducible algebras. In this article, we show that the many-sorted counterpart of the above theorem is also true, but under the condition of requiring, in the definition of directly reducible many-sorted algebra, that the supports of the factors should be included in the support of the many-sorted algebra. Moreover, we show that the theorem of Birkhoff, according to which every single-sorted algebra is isomorphic to a subdirect product of subdirectly irreducible algebras, is also true in the field of many-sorted algebras.
Quasivarieties of Algebras
2001
This chapter plays a twofold role in the book. Firstly, the chapter surveys basic facts about quasivarieties of algebras. These facts are widely utilised in the subsequent chapters devoted to algebraizable logics. Secondly, the chapter shows how the methods initially elaborated for protoalgebraic sentential logics in the first part can be also applied in the area of equational logic. Most of the results presented in this chapter are proved by way of adapting the purely consequential methods of sentential logic to the needs of the (quasi) equational systems associated with quasivarieties of algebras.
More on Finitely Generated Quasivarieties
2015
We begin with the following observation concerning arbitrary finitely generated quasivarieties